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Abstract

Few-shot learning algorithms aim to learn model parameters capable of adapting
to unseen classes with the help of only a few labeled examples. This work in-
vestigates the role of learning relevant feature manifold for few-shot tasks using
self-supervision and regularization techniques. We observe that regularizing the
feature manifold, enriched via self-supervised techniques, with Manifold Mixup
significantly improves few-shot learning performance. Our proposed method S2M2
beats the current state-of-the-art accuracy on standard few-shot learning datasets
like CIFAR-FS, CUB and mini-ImageNet by 3−8%. We also show that the features
learned using our approach generalize to complex few-shot evaluation tasks and
cross-domain scenarios.

1 Introduction and Related Work
A major research effort is being dedicated to fields such as transfer learning, domain adaptation,
semi-supervised and unsupervised learning [1, 2, 3] to alleviate the requirement of enormous amount
of examples for training Deep convolutional networks (CNN’s). A related problem which operates in
the low data regime is few-shot classification. In few-shot classification, the model is trained on a set
of classes (base classes) with abundant examples in a fashion that promotes the model to classify
unseen classes (novel classes) using few labeled instances. Most of the few-shot learning approaches
can be broadly divided into three main categories - initialization based, distance metric based and
hallucination based methods.

Initialization based methods aim to learn an optimizer [4, 5] or a good model initialization [6, 7, 8]
that can adapt for novel classes in few gradient steps and limited labelled examples. Distance
metric based methods leverage the information about similarity between images (using distance
metric like cosine similarity [9], euclidean distance [10]) to classify novel classes with few examples.
Hallucination based methods [11, 12, 13] augment the limited training data for a new task by
generating or hallucinating new data points.

Learning feature representations that generalize to novel classes is an essential aspect of few-shot
learning problem. This involves learning a feature manifold that is relevant for novel classes.
Regularization techniques like dropout [14], cutout [15], Mixup [16], manifold Mixup [17] enable
the models to generalize to unseen test data that is disjoint from training data. In particular, Manifold
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Mixup[17] methodology showed improvement in classification task over images with standard
deformations and augmentations. The authors also claimed that Manifold Mixup leads to smoother
decision boundaries and flattens the class representations.

For learning robust visual features, a lot of self-supervision techniques [18, 19, 20] in the domain
of semi-supervised learning also aim to predict the type of augmentations applied and enforce the
feature representations to become invariant to image augmentations. [21] took inspiration from
spatial context of an image to derive supervisory signal by defining the surrogate task of relative
position prediction of image patches. Motivated by the task of context prediction, the pretext task
was extended to predict the permutation of the shuffled image patches [22, 23, 24]. [18] leveraged
the rotation in-variance of images to create the surrogate task of predicting the rotation angle of the
image.

Many of the recent advances in few-shot learning exploit the meta-learning framework, which
simulates the training phase as that of the evaluation phase in the few-shot setting. However, in a
recent study [25], it was shown that learning a cosine classifier on features extracted from deeper
networks also performs quite well on few-shot tasks. Motivated by this observation, we focus on
utilizing self-supervision techniques augmented with Manifold Mixup in the domain of few-shot
learning using cosine classifiers. We also note that similar to our findings there is a parallel effort
[26] along the lines of using only self-supervision techniques for boosting few-shot performance.

Our main contributions in this paper are the following:

• We observe that applying Manifold Mixup regularization over the feature manifold enriched
via the self-supervision task of rotation [18] significantly improves the performance of
few-shot tasks. The proposed methodology outperforms the state-of-the-art methods by
3-8% over CIFAR-FS, CUB and mini-ImageNet datasets.

• We show that the improvements made by our methodology become much more pronounced
on increasing N in the N -way K-shot evaluation and also in the cross-domain few-shot task
evaluation.

2 Methodology
We train our few-shot learning algorithm in two phases as is standard [25]: the first phase consists
of training a classification network over base class data Db = {(xi; yi); i = 1; · · · ;mb} where
{yi ∈ Cb} to obtain a feature extractor f�, the second phase consists of fixing the parameter � of
feature extractor and learning a new classifier for novel class data Dn = {(xi; yi); i = 1; · · · ;mn}
where {yi ∈ Cn}. We assume that there are Nb base classes (cardinality of Cb) and Nn novel classes
(cardinality of Cn). The general goal of transfer learning based few-shot algorithms like this is to
learn rich feature representations from the abundant labeled data of base classes Nb, such that the
features can be easily adapted for the novel classes (disjoint from base classes) using only few labeled
instances.

Importantly, in our proposed methodology, we leverage self-supervision and regularization techniques
[17, 18, 20] to learn general-purpose representation suitable for few-shot tasks. We hypothesize
that using robust features which describes the feature manifold well is important to obtain better
performance over the novel classes in the few-shot setting. In the subsequent subsections, we describe
our training procedure to use self-supervision methods (such as rotation[18] and exemplar[20])
to obtain a suitable feature manifold, following which using Manifold Mixup regularization [17]
provides a robust feature extractor backbone. We empirically show that this proposed methodology
achieves the new state-of-the-art result on standard few-shot learning benchmark datasets. Figure 1
in appendix provides an overview of our approach S2M2 for few-shot learning.

2.1 Manifold Mixup for Few-shot Learning
Manifold Mixup [17], a recent work, leverages linear interpolations in neural network layers to help
the trained model generalize better. In particular, given input data x and x′ with corresponding feature
representations at layer l given by f l�(x) and f l�(x′) respectively. Assuming we use Manifold Mixup
on the base classes in our work, the loss for training Lmm is then formulated as:

Lmm = E(x;y)∈Db

[
L
(
Mix�(f

l
�(x); f

l
�(x
′));Mix�(y; y

′)
)]

(1)
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Method mini-Imagenet CUB CIFAR-FS
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MAML [6] 54.69 ± 0.89 66.62 ± 0.83 71.29 ± 0.95 80.33 ± 0.70 58.9 ± 1.9 71.5 ± 1.0
ProtoNet [10] 54.16 ± 0.82 73.68±0.65 71.88±0.91 87.42 ± 0.48 55.5 ± 0.7 72.0 ± 0.6

RelationNet [27] 52.19 ± 0.83 70.20 ± 0.66 68.65 ± 0.91 81.12 ± 0.63 55.0 ± 1.0 69.3 ± 0.8
LEO [7] 61.76 ± 0.08 77.59 ± 0.12 68.22 ± 0.22 78.27 ± 0.16 - -

DCO [28] 62.64 ± 0.61 78.63 ± 0.46 - - 72.0 ± 0.7 84.2 ± 0.5
Manifold Mixup 57.16 ± 0.17 75.89 ± 0.13 73.47 ± 0.89 85.42 ± 0.53 69.20 ± 0.2 83.42 ± 0.15

Rotation 63.9 ± 0.18 81.03 ± 0.11 77.61 ± 0.86 89.32 ± 0.46 70.66 ± 0.2 84.15 ± 0.14
S2M2R 64.93 ± 0.18 83.18 ± 0.11 80.68 ± 0.81 90.85 ± 0.44 74.81 ± 0.19 87.47 ± 0.13

Table 1: Comparison with prior/current state of the art methods on mini-ImageNet, CUB and CIFAR-FS dataset.

where
Mix�(a; b) = � · a+ (1− �) · b (2)

The mixing coefficient � is sampled from a �(�; �) distribution and loss L is cross-entropy loss.

Training using loss Lmm encourages the model to predict less confidently on linear interpolations of
hidden representations. This encourages the feature manifold to have broad regions of low-confidence
predictions between different classes and thereby smoother decision boundaries, as shown in [17]
leading to state-of-the-art results in few-shot learning benchmarks.

2.1.1 Self-Supervision: Towards the Right Manifold
We observed that Manifold Mixup does result in higher accuracy on few-shot tasks, as shown in
Section 3.1. However, it still lags behind existing state-of-the-art performance, which begs the
question: Are we charting the right manifold? In few-shot learning, novel classes introduced during
test time can have a different data distribution when compared to base classes. In order to counter
this distributional shift, we hypothesize that it is important to capture the right manifold when using
Manifold Mixup for the base classes. To this end, we leverage self-supervision method of rotation
prediction [18] as the pretext task in our experiments. We also report the results on self-supervision
task of exemplar-training [20] in appendix.
Rotation [18]: In this self-supervised task, the input image is rotated by different angles, and
the auxiliary aim of the model is to predict the amount of rotation applied to image. In the image
classification setting, an auxiliary loss (based on the predicted rotation angle) is added to the standard
classification loss to learn general-purpose representations suitable for image understanding tasks.
In this work, we use a 4-way linear classifier, cWr

, on the penultimate feature representation f�(xr)
where xr is the image x rotated by r degrees and r ∈ CR = {0◦; 90◦; 180◦; 270◦}, to predict one of
4 classes in CR.
2.1.2 S2M2: Self-Supervised Manifold Mixup
We hypothesize that using self-supervision as an auxiliary loss while training the base classes, enables
the backbone model, f�, to provide feature representations that generalize well to the novel classes.
This is evidenced in our results presented in Section 3.1. Our overall methodology is summarized in
the steps below.
Step 1: Self-supervised training: Train the backbone model using self-supervision as an auxiliary
loss along with classification loss i.e. L+ Lss where Lss refers to the loss of self-supervision task.
Step 2: Fine-tuning with Manifold Mixup: Fine-tune the above model with Manifold Mixup loss
Lmm for a few more epochs.

After obtaining the backbone, a cosine classifier is learned over it to adapt to few-shot tasks. We refer
our proposed methodology of S2M2 as S2M2R when rotation task is used as the self-supervision task.
In the appendix section, we also propose a variant of S2M2 i.e. S2M2E which uses exemplar [20] as
the self-supervision loss.

3 Experiments and Results
In this section, we present our results of few-shot classification task on different datasets and model
architectures. We first describe the datasets, evaluation criteria and implementation details2.

2To improve reproducibility of our results, we will open-source our code after publication
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Experimental Details We perform experiments on three standard datasets for few-shot image
classi�cation benchmark,mini-ImageNet [9], CUB [29] and CIFAR-FS [30]. We use WRN-28-10
[31] as feature backbone which is a Wide Residual Network of 28 layers and width factor 10. We
evaluate experiments on 5-way 1-shot and 5-way 5-shot [9] classi�cation setting i.e using 1 and 5
labeled instances of each of the 5 classes as training data and some instances each from the same
classes as testing data (from novel classes). Details about the datasets, model architecture and
evaluation is mentioned in appendix.

3.1 Performance evaluation over few-shot tasks

We now report the results3 by using only Manifold Mixup, Self-supervised rotation and our proposed
methodology S2M2R in table 1. We compare them with current state-of-the-art [7] [28] and other
existing few-shot approaches [10] [27]. As we can observe from table, our approachS2M2R beats the
most recent state-of-the-art results , LEO [7] and DCO [28], by a signi�cant margin on all the three
datasets. We �nd that using only rotation prediction as an auxiliary task during backbone training
also outperforms the existing state-of-the-art methods onmini-Imagenetdataset. We report the results
of its variants (using exemplar training for self-supervision) in Appendix.

Table 2:Few-shot accuracy asN in N -way classi�ca-
tion increases.

Method 10-way 15-way 20-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline++ 40.43 56.89 31.96 48.2 26.92 42.8
LEO [7] 45.26 64.36 36.74 56.26 31.42 50.48

DCO [28] 44.83 64.49 36.88 57.04 31.5 51.25

Manifold Mixup 42.46 62.48 34.32 54.9 29.24 48.74
Rotation 47.77 67.2 38.4 59.59 33.21 54.16
S2M2R 50.4 70.93 41.65 63.32 36.5 58.36

Table 3:Cross-domain few-shot evaluation.

Method mini-Imagenet =) CUB
1-Shot 5-Shot

DCO [28] 44.79� 0.75 64.98� 0.68
Baseline++ 40.44� 0.75 56.64� 0.72

Manifold Mixup 46.21� 0.77 66.03� 0.71
Rotation 48.42� 0.84 68.40� 0.75
S2M2R 48.24� 0.84 70.44� 0.75

4 Ablation Studies

To understand the signi�cance of learned feature representation for few-shot tasks, we perform some
ablations and analyze the �ndings in this section. We choosemini-ImageNet as the primary dataset
with WRN-28-10 backbone for the following experiments.

Effect of varying N in N -way Classi�cation We test our proposed methodology in complex
few-shot settings. We varyN in N -way K -shot evaluation criteria from5 to 10, 15 and20. The
corresponding results are reported in table 2. We observe that our approachS2M2R outperforms other
techniques by a signi�cant margin. The improvement becomes more pronounced asN increases.

Cross-domain few-shot learning We believe that in practical scenarios, there may be a signi�-
cant domain-shift between the base classes and novel classes. Therefore, to further highlight the
signi�cance of selecting the right manifold for feature space, we evaluate the few-shot classi�cation
performance over cross-domain dataset :mini-ImageNet =) CUB (coarse-grained to �ne-grained
distribution) using Baseline++, Manifold Mixup [17], Rotation [19] andS2M2R . We train the feature
backbone with the base classes ofmini-ImageNet and evaluate its performance over the novel classes
of CUB (to highlight the domain-shift). We report the corresponding results in table 3.

5 Conclusion

We observe that learning feature representation with relevant regularization and self-supervision
techniques lead to consistent improvement of few-shot learning tasks on a diverse set of image
classi�cation datasets. Notably, we demonstrate that feature representation learning using both
self-supervision and classi�cation loss and then applying Manifold-mixup over it, outperforms
prior state-of-the-art approaches in few-shot learning. This work opens up a pathway to further
explore the techniques in self-supervision and generalization techniques to improve computer vision
tasks speci�cally in low-data regime. Finally, our �ndings highlight the merits of learning a robust
representation that helps in improving the few-shot tasks.

3We implemented LEO for CUB dataset and report those results
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Appendix

5.1 Experimental Details

Datasets Mini-ImageNet consists of 100 classes from the ImageNet [32] which are split randomly
into 64 base, 16 validation and 20 novel classes. Each class has 600 samples of size 84× 84. CUB
contains 200 classes with total 11,788 images of size 84× 84. The base, validation and novel split
is 100, 50 and 50 classes respectively. CIFAR-FS is created by randomly splitting 100 classes of
CIFAR-100 [33] into 64 base, 16 validation and 20 novel classes. The images are of size 32× 32.

Implementation details Here, we also perform experiments on two additional model architectures
: ResNet-18, ResNet-34 [34] apart from WRN-28-10 used in section 3.1. Average pooling is applied
at the last block of each architecture for getting feature vectors. ResNet-18 and ResNet-34 models
have 512 dimensional output feature vector and WRN-28-10 has 640 dimensional feature vector. For
training ResNet-18 and ResNet-34 architectures, we use Adam optimizer for mini-ImageNet and
CUB whereas SGD optimizer for CIFAR-FS. For WRN-28 training, we use Adam optimizer for all
datasets.

Evaluation Criteria We evaluate experiments on 5-way 1-shot and 5-way 5-shot [9] classification
setting i.e using 1 and 5 labeled instances of each of the 5 classes as training data and Q instances
each from the same classes as testing data (from novel classes). For mini-ImageNet and CIFAR-FS we
report the average classification accuracy over 10000 tasks where Q = 599 for 1-Shot and Q = 595
for 5-Shot tasks respectively. For CUB we report average classification accuracy with Q = 15 over
600 tasks. We compare our approach S2M2R against the current state-of-the-art methods, LEO [7]
and DCO [28] in Section 3.1.

5.2 Performance over few-shot tasks by varying feature backbones

We compare the performance of Manifold Mixup [17] with Baseline++ [25] and mixup [16]. All
experiments using Manifold Mixup randomly sample a hidden layer (including input layer) at each
step to apply mixup as described in equation 1 for the mini-batch with mixup coefficient (�) sampled
from a �(�; �) distribution with � = 2. For Mixup [16] the mixup coefficient is sampled from a
uniform distribution (� = 1).

The results are shown in table 4. We can see that the boost in few-shot accuracy from the two
aforementioned mixup strategies is significant when model architecture is deep (WRN-28-10). For
shallower backbones (ResNet-18 and ResNet-34), the results are not conclusive.

Table 4 also reports the performance of using exemplar-training as self supervision task. Exemplar
training [35] aims at making the feature representation invariant to a wide range of image transforma-
tions such as translation, scaling, rotation, contrast and color shifts. In a given mini-batch , we create
4 copies of each image through random augmentations. These 4 copies are the positive examples
for each image and every other image in the mini-batch is a negative example. We then use hard
batch triplet loss [36] with soft margin on f�(x) on the mini-batch to bring the feature representation
of positive examples close together. For this, we use random cropping, random horizontal/vertical
flip and image jitter randomization [19] to produce 4 different positive variants of each image in the
mini-batch. Since exemplar training is computationally expensive, we fine-tune the baseline++ model
for 50 epochs using both exemplar and classification loss.

As we see, by selecting rotation and exemplar as an auxiliary loss there is a significant improvement
from Baseline++ ( 7-8%) in most cases. Also, the improvement is more prominent for deeper
backbones like WRN-28-10.

5.3 Ablation Studies

We perform more ablations to show the efficacy of our proposed methodology. We choose mini-
ImageNet as the primary dataset with WRN-28-10 backbone for the following experiments.

Generalization performance of supervised learning over base classes The results in table 4 and
2 empirically support the hypothesis that our approach learns a feature manifold that generalizes
to novel classes and also results in improved performance on few-shot tasks. This generalization

7



Figure 1: Flowchart for our proposed approach (S2M2) for few-shot learning. The auxiliary loss is derived
from Manifold Mixup regularization and self-supervision tasks of rotation and exemplar.

Dataset Method ResNet-18 ResNet-34 WRN-28-10
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

mini-Imagenet

Baseline++ 53.56 ± 0.32 74.02 ± 0.13 54.41 ± 0.21 74.14 ± 0.19 57.53 ± 0.10 72.99 ± 0.43
Mixup (� = 1) 56.12 ± 0.17 73.42 ± 0.13 56.19 ± 0.17 73.05 ± 0.12 59.65 ± 0.34 77.52 ± 0.52

Manifold Mixup 55.77 ± 0.23 71.15 ± 0.12 55.40 ± 0.37 70.0 ± 0.11 57.16 ± 0.17 75.89 ± 0.13
Rotation 58.96 ± 0.24 76.63 ± 0.12 61.13 ± 0.2 77.05 ± 0.35 63.9 ± 0.18 81.03 ± 0.11
Exemplar 56.39 ± 0.17 76.33 ± 0.14 56.87 ± 0.17 76.90 ± 0.17 62.2 ± 0.45 78.8 ± 0.15
S2M2E 56.80 ± 0.2 76.54 ± 0.14 56.92 ± 0.18 76.97 ± 0.18 62.33 ± 0.25 79.35 ± 0.16
S2M2R 64.06 ± 0.18 80.58 ± 0.12 63.74 ± 0.18 79.45 ± 0.12 64.93 ± 0.18 83.18 ± 0.11

CUB

Baseline++ 67.68 ± 0.23 82.26 ± 0.15 68.09 ± 0.23 83.16 ± 0.3 70.4 ± 0.81 82.92 ± 0.78
Mixup (� = 1) 68.61 ± 0.64 81.29 ± 0.54 67.02 ± 0.85 84.05 ± 0.5 68.15 ± 0.11 85.30 ± 0.43

Manifold Mixup 70.57 ± 0.71 84.15 ± 0.54 72.51 ± 0.94 85.23 ± 0.51 73.47 ± 0.89 85.42 ± 0.53
Rotation 72.4 ± 0.34 84.83 ± 0.32 72.74 ± 0.46 84.76 ± 0.62 77.61 ± 0.86 89.32 ± 0.46
Exemplar 68.12 ± 0.87 81.87 ± 0.59 69.93 ± 0.37 84.25 ± 0.56 71.58 ± 0.32 84.63 ± 0.57
S2M2E 71.81 ± 0.43 86.22 ± 0.53 72.67 ± 0.27 84.86 ± 0.13 74.89 ± 0.36 87.48 ± 0.49
S2M2R 71.43 ± 0.28 85.55 ± 0.52 72.92 ± 0.83 86.55 ± 0.51 80.68 ± 0.81 90.85 ± 0.44

CIFAR-FS

Baseline++ 59.67 ± 0.90 71.40 ± 0.69 60.39 ± 0.28 72.85 ± 0.65 67.5 ± 0.64 80.08 ± 0.32
Mixup (� = 1) 56.60 ± 0.11 71.49 ± 0.35 57.60 ± 0.24 71.97 ± 0.14 69.29 ± 0.22 82.44 ± 0.27

Manifold Mixup 60.58 ± 0.31 74.46 ± 0.13 58.88 ± 0.21 73.46 ± 0.14 69.20 ± 0.2 83.42 ± 0.15
Rotation 59.53 ± 0.28 72.94 ± 0.19 59.32 ± 0.13 73.26 ± 0.15 70.66 ± 0.2 84.15 ± 0.14
Exemplar 59.69 ± 0.19 73.30 ± 0.17 61.59 ± 0.31 74.17 ± 0.37 70.05 ± 0.17 84.01 ± 0.22
S2M2E 61.95 ± 0.11 75.09 ± 0.16 62.48 ± 0.21 73.88 ± 0.30 72.63 ± 0.16 86.12 ± 0.26
S2M2R 63.66± 0.17 76.07± 0.19 62.77± 0.23 75.75± 0.13 74.81 ± 0.19 87.47 ± 0.13

Table 4: Results on mini-ImageNet, CUB and CIFAR-FS dataset over different network architecture.

Table 5: Validation set top-1 accuracy of different
approaches over base classes and it’s perturbed vari-
ants (I:ImageNet; I2:ImageNetv2; P:Pixelation noise; C:
Contrast noise; B: Brightness; Adv: Adversarial noise)

Methods I I2 P C B Adv
Baseline++ 80.75 81.47 70.54 47.11 74.36 19.75

Rotation 82.21 83.91 71.9 50.84 76.26 20.5
Manifold

Mixup 83.75 87.19 75.22 57.57 78.54 44.97

S2M2R 85.28 88.41 75.66 60.0 79.77 28.0

Table 6: Effect of using the union of base and valida-
tion classes for training backbone feature extractor f� .

Method Base + Validation
1-Shot 5-Shot

LEO [7] 61.76 ± 0.08 77.59 ± 0.12
DCO [28] 64.09 ± 0.62 80.00 ± 0.45

Baseline++ 61.10 ± 0.19 75.23 ± 0.12
Manifold Mixup 61.10 ± 0.27 77.69 ± 0.21

Rotation 65.98 ± 0.36 81.67 ± 0.08
S2M2R 67.13 ± 0.13 83.6 ± 0.34

of the learned feature representation should also hold for base classes. To investigate this, we
evaluate the performance of backbone model over the validation set of the ImageNet dataset and the
recently proposed ImageNetv2 dataset[37]. ImageNetV2 was proposed to test the generalizability
of the ImageNet trained models and consists of images having slightly different data distribution
from the ImageNet. We further test the performance of backbone model over some common visual
perturbations and adversarial attack. We randomly choose 3 of the 15 different perturbation techniques
- pixelation, brightness, contrast , with 5 varying intensity values , as mentioned in the paper [38]. For
adversarial attack, we use the FGSM attack [39] with � = 1:0=255:0. All the evaluation is over the
64 classes of mini-Imagenet used for training the backbone model. The results are shown in table 5.2.
As it can be seen that our proposed technique has the best generalization performance for the base
classes also.

Effect of using the union of base and validation classes We test the performance of few-shot
tasks after merging the validation classes into base classes. In table 6, we see a considerable
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