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Abstract

We consider the problem of semi-supervised few-shot classification (when the few
labeled samples are accompanied with unlabeled data) and show how to adapt the
Prototypical Networks [[10] to this problem. We first show that using larger and
better regularized prototypical networks can improve the classification accuracy.
We then show further improvements by making use of unlabeled data.

1 Introduction

Few-shot learning addresses the problem of learning new concepts quickly, which is one of the
important properties of human intelligence. In few-shot classification, the task is to adapt a classifier
to previously unseen classes from just a few examples [, 14, [11}, [8]]. This skill is useful in many
practical applications since data annotation is laborious and a training set can be rather small. Recent
works have focused on casting few-shot learning as a meta-learning problem, in which a model is
trained on a variety of tasks to adapt quickly using a small number of training examples [1} 7} 8} 6].
Thus, the system learns to adapt to new problems using few labeled samples based on the knowledge
transferred from its previous experience with related problems.

In some real-world problems, the tasks to which the learning system needs to adapt may contain both
(few) labeled and (many) unlabeled examples, the problem known as semi-supervised learning. For
example, a common feature of photo management applications is automatic organization of images
based on limited interactive supervision from the user. The classes relevant to a specific user are
likely to be different from the classes in publicly available image datasets such as ImageNet, thus
there is a need for adaptation. The user can facilitate the adaptation by labeling a few images by
personal preferences. In this application, the learning system also has access to lots of unlabeled
images and it can make use of those to improve the classification accuracy. This is the problem of
semi-supervised few-shot classification that we consider in this paper. We show that a model called
Prototypical Networks [[10] can be extended to handle unlabeled data and we demonstrate noticeable
improvement on few-shot classification tasks.

2 Prototypical Networks

2.1 Supervised learning

In few-shot classification, the learning system needs to solve a classification task using a data
set S = {(x1,¥1), ..., (X, yr)} with T labeled examples, where x; denote inputs and y; are the
corresponding labels. To solve the few-shot classification, Prototypical Networks (PN) compute a
representation of the inputs x using an embedding function g parameterized with v: z = g(x,~).
Each class k is represented in the embedding space by a prototype vector which is computed as the
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mean vector of the embedded inputs for all the examples S}, of the corresponding class k:
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The distribution over predicted labels y for a new sample is computed using softmax over negative
distances to the prototypes in the embedding space:
exp(—d(z,ck))

p(y = klx,{ck}) = Zk/ exp(—d(z,cp)) -

The training process iterates between the following steps. A subset of classes is randomly selected
to formulate one training task. The support set S and query set Q@ = {(x1,91), ..., (xy,yy)} are
created by sampling examples from the selected classes. The prototypes are estimated using the
support set S and (). The parameters ~y are updated so as to improve the likelihood computed on the
query set:

> logply = yjlxs. {ek}),
(x;,9;)€Q
which is computed using (2)) with the estimated prototypes.

2.2 Semi-supervised learning

In the semi-supervised scenario, test tasks contain both labeled and unlabeled samples. The prototypes
can first be estimated with the labeled data using (I)). Then, the probability distributions of the missing
labels can be computed with (2 and the prototypes can be re-estimated:
. >y = klx;)z;
k = )
>, ply = klx;)
where the summation is done for all the samples. p(y = k|x;) is either 0 or 1 for the labeled samples
and is computed using (2)) for the unlabeled samples. Iterating this re-estimation process corresponds
to parameter estimation in a mixture-of-Gaussian model using the EM-algorithm. In practice, we do
only one update (3) as we did not observe further improvements with more iterations. We also use an
approximation of (3] by binarizing p(y|x) so that the most probable class has the probability one and
the remaining classes have the probability zero, which corresponds to hard assignment similar to the
one used in the K-means algorithm. The PN model can be either trained normally using only labeled

examples, or the prototypes can be re-estimated with the unlabeled samples also in the training
procedure. In practice, both strategies yielded similar results in our experiments.

3)

3 Experiments

3.1 Synthetic data set

To test the proposed algorithm, we created a synthetic data set which is fast to experiment with. The
data set consists of a set of two-dimensional classification tasks with two classes, in which the optimal
decision boundary is a sine wave (see Fig.[I)). The amplitude A of the optimal decision boundary
varies across tasks within [0.1,5.0] and the phase ¢ varies within [0, 27]. The first dimension of the
data samples is drawn uniformly from [—5, 5] and the second dimension is computed as

x9 = Asin(z1 + @) + ¢

where c is a noise term with the Laplace distribution with the mean +2 (depending on the class) and
the scale parameter 0.5. We sampled 100 tasks for training and 1000 tasks for testing.

In this experiment, we use a fully connected network with two hidden layers of size 40 with ReLU
nonlinearity as the embedding network. Examples of the decision boundaries produced by PNs
on test tasks are shown in Fig.[T] Note that even for a small number of training examples the PN
decision boundaries resemble the sine wave, thus the knowledge is transferred between tasks. The
classification errors on test tasks depending on the number of unlabeled samples are shown in Table|T]
One can see from the results that the PN accuracy improves with the use of unlabeled data. However,
the improvement plateaus and the results do not improve much after adding more than 100 data
points.



Figure 1: Left: Example task from the sine data set. The black dots correspond to samples of one
class and the white dots correspond to samples from the other class. The optimal decision boundary
is shown with the blue line. Middle: Example of adaptation to a test task from 10 labeled samples.
Right: Example of adaptation to a test task from the same 10 labeled samples and 100 unlabeled
samples. The blue dots correspond to unlabeled samples.

Table 1: Classification error on sine data set with 10 labeled samples and n extra samples.

n | labeled unlabeled

0 6.38 6.38

10 4.97 5.54
100 2.98 4.70
1000 1.68 4.57

3.2 minilmagenet

We tested the PN in the semi-supervised scenario on the minilmagenet recognition task proposed
in [[L1]. The dataset involves downsampled 84x84 images from 64 training classes, 12 validation
classes, and 24 test classes from Imagenet. We use the same split as [8]]. We follow the experimental
setup which involves N-way K shot classification, similarly to [11] that is every task at test time
contains N classes with K labeled examples from each class. For the semi-supervised case, we also
assume the existence of M unlabeled samples per class at test time. Following previous works, we
use 15 test samples per class for each task during training and for evaluation. We evaluate the model
over 2400 tasks which involve the 24 classes reserved for testing.

One challenge with the minilmagenet data set is that it requires rather complex features but it contains
relatively little amount of data. Therefore, preventing overfitting becomes an important issue. Most
previous works [[L1, (8} 2 [10] used conventional convolutional networks with a small number of layers
to prevent overfitting. Those networks may not be expressive enough to capture relevant complex
features. In PNs [[10], the model was also regularized by having more classes at training time than at
test time (e.g., 30-way training and 5-way testing). In our experiments, we used a Wide Residual
Network [12] as the embedding network. It was a network of depth 16 and a widen factor of 6.
We had a 8 x 8 pooling with a stride of 4 at the end to obtain embeddings of dimensionality 384.
The network was regularized with dropout with rate of 0.3. We used the Adam optimizer [3|] with
a learning rate of 0.01 for training. We perform early stopping to prevent overﬁttingﬂ We trained
the model with 30 classes during training for 1-shot classification and 20 classes during training for
5-shot classification, similarly to the original PN paper. We tried varying the number of classes during
training and observed that it had much smaller impact on the results compared to the observations
in [[10]. This suggests that tuning this regularization parameter is less important for the proposed
architecture.

The results are presented in Table 2} One can observe that using the Wide ResNets to learn the
embedding space yields noticeable improvements of the classification accuracy compared to the
baseline methods. The improvements are more significant for the 20-way classification. The last row
in Table 2] presents the results of the PN tested in the semi-supervised scenario: The prototypes are

'Residual Networks are typically trained using stochastic gradient descent with momentum and we expect
better results by doing the same and fine-tuning the hyperparameters.



Table 2: Average classification accuracy (with 95% confidence intervals) on minilmagenet. The

comparison numbers for the 20-way testing are from [6].

5-way testing 20-way testing
Model 1-shot 5-shot 1-shot 5-shot
fine-tuning baseline 28.86 £0.54 49.79+0.79 | — -
nearest-neighbor baseline 41.08 £0.70 51.04+£0.65 | — -
Meta-LSTM [8]] 43.44 £0.77 60.60 +0.71 | 16.70 £0.23  26.06 £ 0.25
Matching nets [[11]] 46.6 60.0 17.31+£0.22  22.69+£0.20
MAML [2] 48.70 £1.84 63.11+0.92 | 16.49 £0.58 19.29 £ 0.29
ARC [9] 49.14 - - -
Meta Networks [7]] 49.21 £0.96 - - -
PN [10] 49.42 +£0.78 68.20+0.66 | — -
Meta-SGD [6]] 50.47+1.87 64.03+0.94 | 17.56 £0.64 28.924+0.35
Resnet PN (ours) 51.69 +£0.42 69.57+0.64 | 23.35+0.28 41.10+0.25
Resnet PN, re-estimate (ours) | 54.05 +0.47 70.92+0.66 | 23.59 +£0.31 41.23 +0.26

Table 3: Average classification accuracy (with 95% confidence intervals) on minilmagenet for the

semi-supervised scenario. M is the number of unlabeled samples per class available at test time.

5-way testing
M 1-shot 5-shot
15 | 54.05+0.47 70.92 £ 0.66
30 | 54.70+£0.46 71.86 £ 0.59
60 | 55.66 +0.46 72.21 £0.55
120 | 55.67 £0.45 72.55+£ 0.52

re-estimated at test time using both labeled samples and the inputs x from the test set. In Table[3] we
show how the number of unlabeled examples at test time affects the classification accuracy of the
trained PN. The results indicate that more unlabeled samples yields better performance, however,
the improvement plateaus very quickly with the increase of the number of unlabeled samples. This
agrees with the results obtained on the synthetic data reported in Section [3.1]

4 Conclusion

In this paper, we proposed an extension of the Prototypical Networks for few-shot semi-supervised
classification. The preliminary results indicate that the proposed extension can improve the few-shot
accuracy by using unlabeled data. However, the improvement plateaus quickly with the increase
of the number of unlabeled data, which suggests that the algorithm may be further improved. We
continue investigating other possible alternatives.
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