
Modular Meta-Learning with Shrinkage

Yutian Chen, Abram L. Friesen, Feryal Behbahani,
David Budden, Matthew W. Hoffman, Arnaud Doucet, Nando de Freitas

DeepMind
London, UK

{yutianc,abef}@google.com

Abstract

Most gradient-based approaches to meta-learning do not explicitly account for the
fact that different parts of the underlying model adapt by different amounts when ap-
plied to a new task. For example, the input layers of an image classification convnet
typically adapt very little, while the output layers can change significantly. This can
cause parts of the model to begin to overfit while others underfit. To address this,
we introduce a hierarchical Bayesian model with per-module shrinkage parameters,
which we propose to learn by maximizing an approximation of the predictive
likelihood using implicit differentiation. Our algorithm subsumes Reptile and out-
performs variants of MAML on two synthetic few-shot meta-learning problems.

1 Introduction

The goal of meta-learning is to extract common knowledge from a set of training tasks in order to solve
held-out tasks more efficiently and accurately. One avenue for learning and re-using this knowledge
is to learn a set of modules that can be re-used or re-purposed at test time as needed. Modularity is
intrinsic to deep learning, and examples range from receptive fields or layers to larger components,
such as perception or policy networks. This modularity enables pre-trained convolutional neural
networks to be rapidly fine-tuned on other image classification datasets, for example. However, most
meta-learning algorithms that use test-time adaptation of a learned model, such as MAML [1] and
Reptile [2], do not explicitly account for the modularity present in their models.

We propose here a hierarchical Bayesian modelling approach to modular meta-learning. The parame-
ters within a module are assumed conditionally independent across tasks and their mean follows a
normal distribution parameterized by a per-module “central” parameter and variance term, which acts
as a local shrinkage parameter; see, e.g., Gelman et al. [3]. As the marginal likelihood is typically
intractable in the scenarios we are interested in, we estimate the shrinkage parameters by maximizing
an approximation of a predictive likelihood criterion using implicit differentiation. Empirically, we
find that this approach is numerically stable, and we provide a theoretical analysis on a toy example
suggesting it exhibits good properties. Our approach is complementary to that of Alet et al. [4], which
proposed a modular method to learn model structures. More related work is discussed in Appendix A.

We evaluate our shrinkage-based approach on two synthetic few-shot meta-learning tasks as a proof of
concept. We show that properly accounting for modularity is crucial for achieving good performance
in these tasks. Our method outperforms Reptile [2], MAML [1], and a modular variant of MAML.

2 Hierarchical Bayes formulation of modular meta-learning
We consider a multi-task learning scenario with a number of tasks bearing some similarity to each
other. For each task Tt indexed by t, a finite set of Nt observations Dt = {xn}Nt

n=1 is assumed

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

Figure 1: Modular meta-learning: a shrinkage
parameter σm is associated with each module
to control the deviation of task-dependent pa-
rameters �m,t from the central value �m.

Figure 2: Graphical representation of the
Bayesian hierarchical model described in
Eq. (1).

available and Dt is modelled using a probabilistic model with parameters �t; these parameters being
partitioned into M modules; i.e. �t = �1:M,t = (�1,t, . . . ,�m,t, . . . ,�M,t), where �m,t ∈ Φm ⊆
RDm . For example, �m,t could be the weights of the m-th layer of a neural network for task t.

To model the relationship between tasks, we adopt a hierarchical Bayesian approach. We assume
that the parameters for a task �t are conditionally independent of those of all other tasks given some
“central" parameters � = �1:M = (�1, . . . ,�m, . . . ,�M), with �m,t ∼ N (�m,t|�m, σ2

mI) for all
m, where N (x|�,Σ) denotes the normal of mean � with covariance matrix Σ, and I is the identity
matrix with appropriate dimensionality. The parameter σm is a shrinkage parameter quantifying how
�m,t can deviate from �m. If σm ≈ 0, then �m,t ≈ �m, i.e., when σm shrinks to zero the parameters
of module m become task independent; see Fig. 1 for an illustration. We assign a non-informative
prior to � and � = (σ1, . . . , σM), and follow an empirical Bayes approach to learn their values from
the data. This allows the model to automatically decide which modules to re-use and which to adapt.

If we denote by D = (D1, ...,DT) the collection of observations corresponding to T tasks and
� = (σ1, ..., σM), then the Bayesian hierarchical model considered here can be summarized by the
following probability density (with graphical model shown in Fig. 2)

p(�,�,D|�) = p(�)

MY
m=1

TY
t=1

N (�m,t|�m, σ2
mI)

TY
t=1

NtY
n=1

p(xt,n|�t). (1)

A standard learning strategy is to maximize the marginal likelihood p(D|�) to obtain a point estimate
of �, and then compute the resulting posterior p(�,�|D,�). However, in standard applications of
meta-learning, this approach does not scale due to the intractability of marginalization. In the next sec-
tion, we propose an approximate, scalable, Bayesian approach to parameter estimation in this model.

3 Learning strategy
To deal with the fact that a large, possibly infinite, number of tasks is available, we propose an
iterative algorithm that at each iteration first samples a batch of tasks Tt ∼ p(T) for t = 1, ..., T
and collects the corresponding datasets D1, ...,DT . The resulting probabilistic model for these
datasets is thus of the form (1). As the corresponding marginal likelihood p(D|�) and posterior
p(�,�|D,�) are typically intractable, it might be tempting to maximize the joint distribution (1)
w.r.t. to �,�,� to estimate those parameters. Unfortunately, this approach fails as explained on a
toy example in Appendix B. In short, even if the model is correctly specified, the optimal value of �
when maximizing the joint distribution is 0, and modules do not adapt when � = 0.

We instead take an approach similar to that of many recent meta-learning algorithms and split each
dataset Dt into train and validation subsets, Dtrain

t and Dval
t , respectively. We estimate the task

parameters �1:T and shared meta parameters � with MAP (maximum a posteriori) on the train

2

subsets Dtrain
1:T given �. This is equivalent to maximizing the log-joint density in Eq. (1), giving

�̂1:T (�), �̂(�) = argmax
�1:T ,�

`MAP, where `MAP := log p
�
�1:T ,�|Dtrain

1:T ,�
�
. (2)

Given these, we estimate the shrinkage parameters � by maximizing the predictive log-likelihood on
the validation subsets Dval

1:T :

�̂ = argmax
�

log p
�
Dval

1:T |Dtrain
1:T ,�

�
≈ argmax

�

TX
t=1

log p(Dval
t |�̂t(�)) := argmax

�
`PLL , (3)

where the marginalization over the posterior of �t is approximated by the MAP point estimate. Using
the MAP approximation of �t within the predictive log-likelihood ensures that our meta-train and
meta-test time procedures match, and that the meta-train metric directly optimizes the metric being
evaluated at meta-test. Additionally, we show in Appendix B.2 that this provides a consistent estimate
of � on a toy example under regularity conditions. This type of end-to-end meta-learning objective
is similar to various recent works such as Ravi and Larochelle [5] and Finn et al. [1]. However, in
contrast to their emphasis on fast adaptation with a small number of adaptation steps, we are interested
in sample efficiency, and thus allow sufficient time for the task adaptation to converge. Solving Eq. (3)
requires solving Eq. (2), which can require expensive second-order derivatives; however, we show in
Appendix C using implicit differentiation that we can approximate the derivative as

∂`PLL(�)

∂ log σ2
m

≈
TX
t=1

(�m,t − �m)>
∂

∂�̂m,t
log p

�
Dval
t |�̂t

�
. (4)

Our resulting meta-learning algorithm is shown in Algorithm 1, where SGDk(`) corresponds to
taking k steps with stochastic gradient descent (or an adaptive optimizer such as Adam) on loss `.
Notice that Reptile [2] is a special case of our method when � tends to∞ and an appropriate learning
rate is used. It is also possible to estimate � with the predictive log-likelihood objective. We omit the
derivation but the approximate gradient for � is then equivalent to the first-order MAML update [1].

4 Experimental evaluation

Algorithm 1: Shrinkage-based meta-learning.
Input: Task distribution p(T) and inner steps K.
initialize � and �
while not done do
{Tt} ← sample batch of tasks from p(T)
initialize �t ← � for each task in batch {Tt}
for each task Tt do

�t ← SGDK(`MAP) // Eq. (2).
end
�← SGD1(`MAP) // Eq. (2).
log �2 ← SGD1(`PLL) // Eq. (4).

end

We evaluate our proposed method Shrinkage,
along with variants of MAML [1] and Rep-
tile [2] on two synthetic few-shot meta-learning
domains constructed from hierarchical normal
distributions. For each task t, we first sam-
ple latent variables θm,t ∼ N (θm,t|φm, σ2

m)
for each dimension m, and then observations
xt,n ∼ N (xt,n|�t(�t),Ξ). Parameters � and
� are fixed but unknown, and different dimen-
sions of � have different values. To assess the
efficacy of the learning strategy, we use a data
generating process that matches our modeling
assumptions. The data distribution’s mean �t
is a function of �t and is the main aspect that
changes between experiments. The observation noise variance Ξ is a fixed and known diagonal
matrix. The problem in each domain is to learn the parameters �t̃ of a new task Tt̃ given a few
observations {xt̃,n}. The main difference between the two evaluation domains is that �t is a linear
function of �t in the first and is non-linear in the second. Fig. 3 illustrates the experiments in 2-D,
and Appendix D contains a precise specification of both.

To compare the algorithms, we use the negative log-likelihood up to a constant as the loss, and compare
the generalization loss of each algorithm after it adapts to the new task with multiple steps of gradient
descent. For MAML and Shrinkage, we evaluate both the standard (non-modular) versions and
modular versions that learn module-specific parameters, denoted by the “M-” prefix. To ensure a fair
comparison, we increase the flexibility of MAML to match Shrinkage by learning the learning rate of
the inner-loop gradient update for each module, similar to Antoniou et al. [6], who do this to stabilize
MAML as opposed to enabling modularity. Similarly, M-Shrinkage learns a separate σm for each

3

	Introduction
	Hierarchical Bayes formulation of modular meta-learning
	Learning strategy
	Experimental evaluation
	Conclusions
	Related work
	A simple Gaussian example
	Estimating all variables with MAP
	Estimating with predictive log-likelihood

	Derivation of the approximate gradient of predictive log-likelihood
	Additional experiment details

