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Abstract

Learning from a little or a lot of data is addressed by two strong but divided frontiers:
few-shot learning and standard supervised learning. Few-shot learning focuses on
sample efficiency at small scale, while supervised learning focuses on accuracy at
large scale. Ideally they could be reconciled to learn with any number of data points
(shot) and number of classes (way). To span the full spectrum of shot and way, we
frame the variadic learning regime of learning from any number of inputs. We
approach variadic learning by meta-learning a novel multi-modal clustering model
that connects bayesian nonparametrics and deep metric learning. Our bayesian
nonparametric deep embedding (BANDE) method is optimized end-to-end with a
single objective, and adaptively adjusts capacity to learn from variable amounts
of data. BANDE achieves (a) state-of-the-art accuracy for alphabet recognition,
(b) 71.9% accuracy on 1692-way, 5-shot Omniglot classification from only 5-way
1-shot meta-learning, (c) 94.4% accuracy on CIFAR-10 (comparable to supervised
learning techniques), and (d) equal or better than state-of-the-art accuracies for
semi-supervised classification of Omniglot and mini-ImageNet.

1 Introduction

In machine learning, classification problems span two important axes: the number of classes to
recognize (the "way" of the problem) and the number of examples provided for each class (the
"shots" to learn from). At one extreme, there are large-scale tasks like ImageNet in which there are
1000 classes each with roughly 1000 examples (a 1000-way, ~1000-shot problem). At the other
extreme, there are datasets for learning from few examples, such as Omniglot, which features a 5-
or 20-way, 1-shot problem. State-of-the-art methods for these two points in the problem orthant are
substantially different, with the former dominated by standard fully-supervised deep networks and
the latter by episodic meta-learning techniques. We propose a single learner for different shots and
ways, including the one-shot and many-shot extremes, that generalizes better than existing methods.
Our method is a multi-modal, semi-supervised clustering algorithm on deep embeddings (Figure|[l).

We call this regime of variable shot and way the variadic learning regime, after variadic functions.
Just as variadic functions are those which can take any number of arguments to produce a result, a
good variadic learner must learn from any amount of data, whatever the number of examples and
classes, and produce strong results across unknown data distributions during test.

Ideally, meta-learning approaches need not depend on a specific testing shot and way. However, in
practice, meta-learning has commonly been trained and evaluated in constrained circumstances. Meta-
learning is usually carried out independently across settings so that a different learner is specialized
to each n-way, k-shot task. This potentially limits deployment to more diverse settings with variable
shot and way that we address in this work.
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Figure 1: Our bayesian bonparametric deep embedding (BANDE) method is optimized end-to-end to
cluster labeled and unlabeled data into multi-modal prototypes. BANDE represents each class by a
set of clusters, unlike prior prototypical methods that represent each class by a single cluster.

2 Bayesian Nonparametric Deep Embedding (BANDE)

Our method defines multi-modal prototypes of labeled and unlabeled data alike through Bayesian non-
parametric clustering of end-to-end optimized deep embeddings. This extends prototypical networks
[LO] and semi-supervised prototypical networks [9] to multi-modal clustering while simplifying the
use of unlabeled data. By deciding the number of modes, our method interpolates between local
exemplar and global prototype representations, in effect adjusting its capacity depending on the data.

For multi-modal clustering we incorporate DP-means [J5] into our approach. DP-means is a scalable,
Bayesian nonparametric algorithm for unsupervised clustering that computes the minimum distance
of each example to all existing cluster means. If this distance exceeds a threshold A, a new cluster is
created by setting its mean equal to the embedding of the example hy(z;). Our extension handles
labeled and unlabeled data, augments the clustering with soft assignments under a normalized
Gaussian likelihood, and defines a procedure for choosing A during learning and inference.

The loss is the normalized Gaussian likelihood of the query em-
beddings under the support clusters. Since there are potentially
multiple clusters with the same label, we weight the loss, where

Algorithm 1 BANDE

the closest cluster mean for the correct class has weight 1, and all Initialize {po, ft1, -+, fin }
other cluster means of that class have weight 0. This encourages Initialize C' = n
BANDE to learn multi-modal embeddings if need be. for each example : do

for each cluster ¢ do

BANDE is initialized with n clusters T for the n
{MO M1 ,un} di . ||h¢(mz) _ Nc”z

labeled classes in the support, with each set to the class-wise mean

as in standard prototypical networks. New labeled clusters are ?nd f or
. . . . if min.(d; .)>\ then
created with a radius o, while unlabeled clusters have radius o, )
. . T C=C+1
to capture increased uncertainty about the unlabeled distribution
. . . He < h¢ (xl)
(which can and does contain multiple unknown classes). end if
Unlike o and o, the distance threshold ) is non-differentiable end for
and cannot be learned jointly. Instead, we set A\ episodically update soft assignments z; .
based on its derivation in [5], which defines it in terms of «, the update cluster means i,

relative probability of a new cluster in the Chinese Restaurant
Process prior, and p, a measure of the standard deviation of the
base distribution for clusters. We estimate p as the variance in the labeled cluster means in an episode,
while « is set as a hyperparameter.

3 Experiments

We report results on multi-modal prototypes of alphabets and characters, generalization across shot
and way in our new variadic regime, and standard few-shot learning benchmarks. We control for
architecture and optimization by comparing methods with the same base architecture and episodic
optimization settings.



We consider Omniglot [6]] and mini-ImageNet [8]], two widely-used few-shot learning datasets, and
CIFAR-10/CIFAR-100 [4]], two popular supervised learning datasets for deep learning research.

Accuracy and Generality of Multi-modal Prototypes

Our experiments on Omniglot alphabets and characters show that multi-modal prototypes are sig-
nificantly more accurate than uni-modal prototypes for recognizing complicated classes (alphabets)
and recover uni-modal prototypes as a special case for recognizing simple classes (characters).By
unifying the clustering of labeled and unlabeled data, our multi-modal prototypes even address fully
unsupervised clustering, unlike prior prototypical networks [10} 9] that are undefined without labels.

We first show the importance of multi-
modality for learning representations Table 1: Alphabet and character recognition accuracy.
of multi-modal classes: Omniglot al- BANDE improves accuracy for multi-modal alphabet classes,
phabets. For these experiments we preserves accuracy for uni-modal character classes (Chars),
meta-train for alphabet classification, and generalizes better from super-classes to sub-classes.

using only the super-class labels.

Episodes are constructed by sampling Training _ Testing Proto. Nets  BANDE

1 example of 200 different random  Alphabet Alphabet 649+02 91.2+0.1
characters in the support set, with 5ex-  Alphabet Chars (20-way) 85.7+£0.2 953 +0.2
amples of each character in the query. ~ Chars Chars (20-way) 94.9+0.2 951 +0.1

For alphabet testing, we provide 100

randomly selected characters with alphabet labels in the support, making this a mixed-shot
problem. For character testing, we provide 1 labeled image of 20 different characters as
support, and score based on correct character assignments of the queries. As seen in ta-
ble [T] in both testing configurations, BANDE substantially outperforms prototypical networks.

Fully Unsupervised Clustering BANDE is able to i .
do fully unsupervised clustering during meta-test via  1able 2: Unsupervised character clustering
multi-modality by inferring the number of clusters. -
BANDE achieves good accuracy under the standard ~_ Metric  10-way  100-way  200-way
clustering metrics of normalized mutual information  pyrity ~ 0.97 0.76 0.63
(NMI) and purity. We examine BANDE’s cluster- NMI 0.95 0.90 0.87

ing performance in Table 2] by randomly sampling 5
unlabeled examples of n held-out test classes.

Variadic Learning: Any-Shot, Any-Way

We measure generalization to differences in shot and way between meta-training and test, show
extreme generalization to 1692-way classification from meta-learning on 5-way episodes, and carry
out the first evaluation of scaling meta-training to the many-shot regime where our method approaches
the accuracy of a supervised learning baseline.

Variable Shot and Way To measure generalization we adjust the shot and way in evaluation from
their fixed settings during meta-learning. For variable way, we consider Omniglot, because it has
many classes. For variable shot, we consider mini-ImageNet, because it has more examples per class.
Training and inference for our method is done in the semi-supervised setting described in few-shot
classification benchmarks (below, boldface).

We consider four strong baselines trained on 100% of the data, as well as prototypical baselines
trained on 40% of the data. For variable shot, we compare to other prototypical methods and the
gradient method MAML [[1] because it is noted for scalability. For variable way we compare to
MAML, the gradient method Reptile [7]], the few-shot graph net of [2]], and the memory model of [3].

Our method’s accuracy is less sensitive to these shifts on Omniglot and mini-ImageNet (Figure [2)).

For shot generalization, we compare to MAML’s accuracy after 10 updates vs. accuracy at conver-
gence. We note that MAML is not able to make effective use of more data unless it is allowed to take
proportionately larger numbers of updates, while our method improves with more data without taking
gradients at test time. Even at convergence, MAML does not reach our accuracies on mini-ImageNet.
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Figure 2: Variadic regime for any-shot, any-way generalization. Models are meta-trained with
5-way 1-shot episodes. Omniglot is tested across 5-200 classes per episode, while mini-ImageNet
is tested across 1-50 examples per class. Baselines (black) are trained on 100% of the labeled data.
Prototypical methods (color) are semi-supervised with 40% of the labeled data (our method starred).

Scaling to Many-Way We demonstrate that BANDE can learn a full 1692-way classifier for Om-
niglot from only episodic optimization of 5-way 1-shot semi-supervised tasks. See Table [3] for
accuracies testing at full way (without unlabeled data or distractors).

The fully parametric baseline shares the same training set and
architecture, substituting a linear output layer for prototypes Table 3: Accuracy on 1692-way

by optimizing the softmax cross-entropy loss. Omniglot from 5-way 1-shot training.
Episgdic gptimizaFion' yields strong ‘r'esults for many-way  pfethod l-shot  5-shot
classification, motivating the possibility of learning large-

scale models cumulatively from small-scale tasks, instead of BANDE* 49.1 71.9
reducing large-scale models to small-scale tasks. semi. sup. [9] 48.8 714

. . . fully parametric  31.0 52.0
Scaling to Many-Shot We examine the effectiveness of

BANDE in the conventional supervised learning regime. To

the best of our knowledge this is the first evaluation of meta-training across the spectrum from few-
shot to many-shot. Our base architecture is the Wide ResNet 28-10 of [11]. We optimize BANDE by
meta-training on episodes consisting of 10-way (CIFAR-10) and 20-way (CIFAR-100) 2-shot tasks
for computational considerations.

Without knowledge of the total shot or way during meta-training, and without pre-training or fine-
tuning, we achieve accuracies that rival a well-tuned supervised learning baseline: 94.4% vs. 95.1%
on CIFAR-10 and 75.6% vs. 81.2% on CIFAR-100. When evaluating BANDE and supervised
learning embeddings as prototypes the accuracies are equal, suggesting that both approaches learn
equally good representations, and differ only in the prototypical/parametric form of the classifier.

Few-Shot Classification Benchmarks

We evaluate our method for few-shot learning in the standard episodic protocol. In this evaluation
protocol, shot and way are fixed and classes are balanced within an episode. We evaluate on 5 sets of
100 episodes. In the fully-supervised setting, our method learns to recover prototypical networks as
a special case by assigning each class a single mode on average, while achieving equal or slightly
better accuracy on Omniglot and mini-ImageNet.

In the semi-supervised setting we follow [9]. We take only 40% of the data as labeled for both
the support and query while the rest of the data is included without labels. The unlabeled data is
incorporated into episodes as (1) support examples that allow for semi-supervised refinement of the
support classes or (2) distractors from the complement of the support classes.

Semi-supervised episodes augment the fully supervised n-way, k-shot support with 5 unlabeled
examples for each of the n classes and include 5 more distractor classes with 5 unlabeled instances
each. The query still contains only support classes. These episodes are scored at n + 1 way with the
distractors, where classifying a query as a distractor is scored as a misclassification, as in prior work.
In this setting, on 5-way 1-shot tasks, BANDE achieves 98.9% accuracy while the semi-supervised
prototypical network [9] achieves 98.0%
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