Recent years have seen rapid progress in meta-learning methods, which learn (and optimize) the performance of learning methods based on data, generate new learning methods from scratch, or learn to transfer knowledge across tasks and domains. Meta-learning can be seen as the logical conclusion of the arc that machine learning has undergone in the last decade, from learning classifiers, to learning representations, and finally to learning algorithms that themselves acquire representations and classifiers. The ability to improve one’s own learning capabilities through experience can also be viewed as a hallmark of intelligent beings, and there are strong connections with work on human learning in neuroscience.

Meta-learning methods are also of substantial practical interest, since they have, e.g., been shown to yield new state-of-the-art automated machine learning methods, novel deep learning architectures, and substantially improved one-shot learning systems.

Some of the fundamental questions that this workshop aims to address are:

The goal of this workshop is to bring together researchers from all the different communities and topics that fall under the umbrella of meta-learning. We expect that the presence of these different communities will result in a fruitful exchange of ideas and stimulate an open discussion about the current challenges in meta-learning, as well as possible solutions.

Speakers

Organizers

Important dates

Schedule

09:00 Introduction and opening remarks
09:10 Invited Talk 1
09:40 Poster spotlights
10:00 Poster session 1
10:30 Coffee Break
11:00 Invited Talk 2
11:30 Poster session 2
12:00 Lunch Break
13:30 Invited Talk 3
14:00 Invited Talk 4
14:30 Poster session 3
15:00 Coffee Break
15:30 Poster session 4
16:00 Invited Talk 5
16:30 Contributed talk 1
16:45 Contributed talk 2
17:00 Panel discussion
18:00 End

Submission Instructions

Papers must be in the latest NIPS format, but with a maximum of 4 pages (excluding references). Papers should include the names of all authors (by uncommenting \nipsfinalcopy in the NIPS LaTeX template prior to submission).

Accepted papers and eventual supplementary material will be made available on the workshop website. However, this does not constitute an archival publication and no formal workshop proceedings will be made available, meaning contributors are free to publish their work in archival journals or conferences.

The two best papers submitted will be presented as 15-minute contributed talks.

Submissions can be made at https://cmt3.research.microsoft.com/metalearn2018 during the submission period.

FAQ

  1. Can supplementary material be added beyond the 4-page limit and are there any restrictions on it?

    Yes, you may include additional supplementary material, but we ask that it be limited to a reasonable amount (~10 pages in addition to the main submission) and that it follow the same NIPS format as the paper.

  2. Can a submission to this workshop be submitted to another NIPS workshop in parallel?

    We discourage this, as it leads to more work for reviewers across multiple workshops. Our suggestion is to pick one workshop to submit to.

  3. If a submission is accepted, is it possible for all authors of the accepted paper to receive a chance to register?

    We cannot confirm this yet, but it is most likely that we will have at most one registration to offer per accepted paper.

  4. Can a paper be submitted to the workshop that has already appeared at a previous conference with published proceedings?

    We won’t be accepting such submissions unless they have been adapted to contain significantly new results (where novelty is one of the qualities reviewers will be asked to evaluate).

Past workshops

Workshop on Meta-Learning (MetaLearn 2017) @ NIPS 2017

Contacts

For any further questions, you can contact us at info@metalearning.ml.

Sponsors

We are currently looking for sponsors for this workshop. For any such sponsorship inquiries, please contact the organizing committee at info@metalearning.ml.