
A Simple Neural Attentive Meta-Learner

Nikhil Mishra∗†‡ Mostafa Rohaninejad∗† Xi Chen† Pieter Abbeel†

† UC Berkeley, ‡ OpenAI

Abstract

Deep neural networks tend to struggle when data is scarce or when they need to
adapt quickly to a changing task. In response, meta-learning proposes training a
meta-learner on a distribution of similar tasks, in the hopes of generalization to
novel but related tasks by learning a high-level strategy that exploits commonalities
in task structure. However, many recent meta-learning approaches are extensively
hand-designed, either using architectures specialized to a particular application, or
hard-coding algorithmic components that constrain how the meta-learner solves
the task. We propose a class of simple and generic meta-learner architectures that
use a novel combination of temporal convolutions and soft attention; the former to
aggregate information from past experience and the latter to pinpoint specific pieces
of information. In the most extensive set of meta-learning experiments to date,
we evaluate the resulting Simple Neural AttentIve Learner (or SNAIL) on several
heavily-benchmarked tasks. On all tasks, in both supervised and reinforcement
learning, SNAIL attains state-of-the-art performance by significant margins.

1 Introduction

The key principle motivating SNAIL is simplicity and versatility: a meta-learner should be universally
applicable to domains in both supervised and reinforcement learning. It should be generic and
expressive enough to learn an optimal strategy, rather than having the strategy already built-in. Prior
work [11] has formalized meta-learning as a sequence-to-sequence problem and attempted to tackle it
with traditional RNN architectures. Despite the generality of such approaches, the bottleneck seems
to be in the recurrent architecture’s ability to internalize and refer to past experience.

van den Oord et al. [16] introduced a class of architectures that generate sequential data (in their
case, audio) by performing dilated 1D-convolutions over the temporal dimension. These temporal
convolutions (TC) are causal, so that the generated values at the next timestep are only influenced
by past timesteps and not future ones. Compared to traditional RNNs, they offer more direct, high-
bandwidth access to past information, allowing them to perform more sophisticated computation over
a temporal context of fixed size. However, to scale to long sequences, the dilation rates generally
increase exponentially, so that the required number of layers scales logarithmically with the sequence
length. Hence, they have coarser access to inputs that are further back in time; their bounded capacity
and positional dependence can be undesirable in a meta-learner, which should be able to fully utilize
increasingly large amounts of experience.

In contrast, soft attention (in particular, the style used by Vaswani et al. [17]) allows a model to
pinpoint a specific piece of information from a potentially infinitely-large context. It treats the context
as an unordered key-value store which it can query based on the content of each element. However,
the lack of positional dependence can also be undesirable, especially in reinforcement learning, where
the observations, actions, and rewards are intrinsically sequential.

Despite their individual shortcomings, temporal convolutions and attention complement each other:
while the former provide high-bandwidth access at the expense of finite context size, the latter can

∗ denotes equal contribution, authors are listed in alphabetical order.

provide pinpoint access over an unbounded context. Hence, we construct SNAIL by combining the
two: we use temporal convolutions to produce the context over which we use a causal attention
operation. By interleaving TC layers with causal attention layers, SNAIL can have high-bandwidth
access over its past experience without constraints on the amount of experience it can effectively use.
By using attention at multiple stages within a model that is trained end-to-end, SNAIL can learn what
pieces of information to pick out from the experience it gathers, as well as a feature representation
that is amenable to doing so easily.

We compose SNAIL architectures using a few primary building blocks. Figure 1 provides an
illustration, as well as an overview of SNAIL.

• A dense block applies a single causal 1D-convolution with dilation rate R and D filters (we
used kernel size 2 in all experiments), and then concatenates the result with its input.

• A TC block consists of a series of dense blocks whose dilation rates increase exponentially
until their receptive field exceeds the desired sequence length.

• A attention block performs a single key-value lookup; we style this operation after the
self-attention mechanism proposed by Vaswani et al. [17].

Figure 1: (a) An overview of SNAIL. The same class of model architectures, which combine TC
(orange) with attention (green) can be applied to both supervised and reinforcement learning. (b) A
dense block performs a temporal convolution and concatenates the input and output. (c) An attention
block performs a causal key-value lookup.

(b) Dense Block (dilation rate R, D �lters)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + D]

causal conv, kernel 2

dilation R, D �lters

(c) Attention Block (key size K, value size V)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + V]

a�ne, output size K

(query)

a�ne, output size K

(keys)

a�ne, output size V

(values) matmul, masked softmax

matmul

Supervised Learning Reinforcement Learning

(Examples,

 Labels)
xt-1

yt-1

xt-2

yt-2

xt

--

xt-3

yt-3

Predicted Label
t

(Observations,

Actions,

Rewards)

ot

at-1

rt-1

ot-3

--
--

ot-2

at-3

rt-3

ot-1

at-2

rt-2

Actionsat-3 atat-2 at-1

(a) Overview of SNAIL

In supervised settings, SNAIL receives as input a sequence of example-label pairs
(x1, y1), . . . , (xt−1, yt−1) for timesteps 1, . . . , t − 1, followed by an unlabeled example (xt,−).
It then outputs its prediction for xt based on the previous labeled examples it has seen.
In reinforcement-learning settings, it receives a sequence of observation-action-reward tuples
(o1,−,−), . . . , (ot, at−1, rt−1). At each time t, it outputs a distribution over actions at based
on the current observation ot as well as previous observations, actions, and rewards. Crucially,
following existing work in meta-RL [1, 19], we preserve the internal state of a SNAIL across episode
boundaries, which allows it to have memory that spans multiple episodes.

2 Results and Discussion
We evaluated SNAIL on a number of meta-learning domains introduced by prior work1; SNAIL
achieved state-of-the-art performance on all domains, outperforming methods that are hand-tailored
to a particular domain, or rely on built-in algorithmic priors. Below, we summarize the different
benchmarks; for more details we refer the reader to Appendix A:

• Few-shot classification: the Omniglot and mini-Imagenet datasets are the standard bench-
marks in supervised meta-learning. In Table 2, we report 1-shot and 5-shot accuracies.

1Some video results can be found at https://sites.google.com/view/snail-iclr-2018/.

2

https://sites.google.com/view/snail-iclr-2018/

• Multi-armed bandit problems [1, 19]: feature a stateless task involving exploration and
exploitation. The meta-learner interacts with K arms (whose reward distributions are
unknown) for N timesteps. As an oracle, we consider the Gittins index [3], which is optimal
as N →∞. In Table 2, we report the average reward per episode for different N,K.

• Tabular MDPs [1, 19]: we generate random MDPs following Duan et al. [1], and allow
a meta-learner to interact with each for N episodes. In Table 2, we report performance
normalized by that of value iteration (optimal if the MDP parameters are known).

• Continuous control [2]: a simulated robot must adapt its locomotion to run in a random
direction or at a random goal velocity. In Figure 2, we show test-time adaptation curves on
the different task distributions introduced by Finn et al. [2]. SNAIL learns to identify the
task and perform optimally within a few timesteps.

• Visual navigation [1, 19]: an agent must navigate random mazes to find a randomly-located
goal, using first-person visual observations. It interacts with each maze for two episodes, so
an optimal agent should explore the maze on the first episode, and then go directly to the
goal on the second. In Figure 3, we show sample observations and maze layouts, as well as
emergence of the optimal strategy. In Table 2, we report the average time to find the goal on
unseen mazes, and explore generalization to larger mazes.

In the bandit and MDP domains, there exist human-designed algorithms with optimality guarantees.
Despite the relative lack of task structure, these domains let us evaluate the optimality of a meta-
learned algorithm. However, the true utility of a meta-learner is that it can learn an algorithm
specialized to a particular task distribution. We evaluate this in the visual navigation and continuous
control domains, where there is significant task structure to exploit, but no optimal algorithms.

In the RL domains (all but few-shot classification), we benchmark SNAIL against the following
meta-learners. All were trained using TRPO with GAE [12, 13].

• An LSTM-based meta-learner, as concurrently proposed by Duan et al. [1], Wang et al. [19].
We refer to this method as “LSTM" in the subsequent tables and figures.
• MAML, the method introduced by Finn et al. [2]. It trains the initial parameters of a policy

to achieve maximal performance after one (policy) gradient update on a new task.

The subsequent tables summarize our results for each domain. We highlight the best-performing
method, as well as any with overlapping confidence intervals (sometimes omitted for brevity).

Method 5-Way Omniglot 20-Way Omniglot 5-Way mini-Imagenet

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Santoro et al. [11] 82.8% 94.9% – – – –

Koch [6] 97.3% 98.4% 88.2% 97.0% – –
Vinyals et al. [18] 98.1% 98.9% 93.8% 98.5% 43.6% 55.3%

Finn et al. [2] 98.7% 99.9% 95.8% 98.9% 48.7% 63.1%
Snell et al. [14] 97.4% 99.3% 96.0% 98.9% 49.42% 68.20%

Munkhdalai and Yu [8] 98.9% – 97.0% – 49.21% –

SNAIL, Ours 99.07% 99.78% 97.64% 99.36% 55.71% 68.88%

Table 1: Few-shot classification: 5-way Omniglot, 20-way Omniglot, and 5-way mini-Imagenet.

0 20 40 60 80 100 120
number of ro outs

40

60

80

100

120

140

160

180

av
er

ag
e

re
tu

rn

ant, goa ve ocity

0 10 20 30 40 50 60
number of ro outs

0

100

200

300

400

500

600

700

av
er

ag
e

re
tu

rn

cheetah, forward/backward

0 20 40 60 80 100 120
number of ro outs

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

ant, forward/backward

0 10 20 30 40 50 60
number of ro outs

−120

−100

−80

−60

−40

av
er

ag
e

re
tu

rn

cheetah, goa ve ocity

LSTM SNAIL (ours) MAML Oracle

Figure 2: Test-time adaptation curves on simulated locomotion tasks. As an oracle, we compute the
average performance of a policy trained on individual tasks sampled from each distribution.

3

Setup Method
(N,K) Gittins

(optimal as N →∞) Random LSTM MAML SNAIL (ours)

10, 5 6.6 5.0 6.7 6.5 ± 0.1 6.6 ± 0.1
10, 10 6.6 5.0 6.7 6.6 ± 0.1 6.7 ± 0.1
10, 50 6.5 5.1 6.8 6.6 ± 0.1 6.7 ± 0.1
100, 5 78.3 49.9 78.7 67.1 ± 1.1 79.1 ± 1.0
100, 10 82.8 49.9 83.5 70.1 ± 0.6 83.5 ± 0.8
100, 50 85.2 49.8 84.9 70.3 ± 0.4 85.1 ± 0.6
500, 5 405.8 249.8 401.5 – 408.1 ± 4.9
500, 10 437.8 249.0 432.5 – 432.4 ± 3.5
500, 50 463.7 249.6 438.9 – 442.6 ± 2.5
1000, 50 944.1 499.8 847.43 – 889.8 ± 5.6

Table 2: Average reward per episode on a range of multi-armed bandit problems. We found that
training MAML was computationally infeasible for N = 500, 1000.

N Method
Random ε-greedy PSRL OPSRL UCRL2 LSTM MAML SNAIL (ours)

10 0.482 0.640 0.665 0.694 0.706 0.752 0.563 0.766 ± 0.001
25 0.482 0.727 0.788 0.819 0.817 0.859 0.591 0.862 ± 0.001
50 0.481 0.793 0.871 0.897 0.885 0.902 – 0.908 ± 0.003
75 0.482 0.831 0.910 0.931 0.917 0.918 – 0.930 ± 0.002
100 0.481 0.857 0.934 0.951 0.936 0.922 – 0.941 ± 0.003

Table 3: Average normalized reward on randomly-generated MDPs. Similarly to the bandit problems,
we were unable to successfully train MAML for N = 50, 75, 100. We compare the meta-learners to
several human-designed algorithms (described in Appendix A).

Method Small Maze Large Maze
Episode 1 Episode 2 Episode 1 Episode 2

Random 188.6 ± 3.5 187.7 ± 3.5 420.2 ± 1.2 420.8 ± 1.2
LSTM 52.4 ± 1.3 39.1 ± 0.9 180.1 ± 6.0 150.6 ± 5.9

SNAIL (ours) 50.3 ± 0.3 34.8 ± 0.2 140.5 ± 4.2 105.9 ± 2.4

Table 4: Average time to find the goal on each episode in the small and large mazes. We didn’t train
MAML on this benchmark, due to the scalability challenges encountered during bandits and MDPs.

Figure 3: From left to right: (a) A (higher-resolution) example of the observations the agent receives.
(b) An example of the mazes used for training (goal shown in blue). (c) The movement of the SNAIL
on its first episode in a larger maze, exploring the maze until it finds the goal. (d) The SNAIL’s path
during its second episode in the same maze as (c). Remembering the goal location, it navigates there
directly on the second episode. Maps like in (b), (c), (d) are used for visualization but not available to
the agent. In (c), (d), the color progression from red to blue indicates the passage of time (red earlier).

4

References
[1] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl$ˆ2$:

Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[2] Chelsea Finn, Pieter Abbeel, and Sergy Levine. Model-agnostic meta learning. International
Conference on Machine Learning (ICML), 2017.

[3] J.C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society. Series B (Methodological), 1979.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[5] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 2010.

[6] Gregory Koch. Siamese neural networks for one-shot image recognition. PhD thesis, University
of Toronto, 2015.

[7] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. One shot
learning of simple visual concepts. In CogSci, 2011.

[8] Tsendsuren Munkhdalai and Hong Yu. Meta networks. International Conference on Machine
Learning (ICML), 2017.

[9] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning. International Conference on Machine Learning (ICML), 2017.

[10] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Interna-
tional Conference on Learning Representations (ICLR), 2017.

[11] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International Conference on
Machine Learning (ICML), 2016.

[12] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. International Conference on Machine Learning (ICML), 2015.

[13] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. International Confer-
ence on Learning Representations (ICLR), 2016.

[14] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning.
arXiv preprint arXiv:1703.05175, 2017.

[15] Malcolm Strens. A bayesian framework for reinforcement learning. In International Conference
on Machine Learning (ICML), 2000.

[16] Aaron van den Oord, Sander Dieleman, Heig Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model
for raw audio. CoRR, abs/1609.03499, 2016.

[17] Ashish Vaswani, Noah Shazeer, Jakob Uszkoreit, Llion Jones, Aidan Gomez N., Lukas Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[18] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems (NIPS), 2016.

[19] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

5

Appendix

A Further Experiment Details

A.1 Few-Shot Classification

In the few-shot classification setting, we wish to classify data points into N classes when we only
have a small number (K) of labeled examples per class. The Omniglot and mini-ImageNet datasets
for few-shot image classification are the standard benchmarks in supervised meta-learning.

Introduced by Lake et al. [7], Omniglot consists of black-and-white images of handwritten characters
gathered from 50 languages, for a total of 1632 different classes with 20 instances per class. Like
prior works, we downsampled the images to 28× 28 and randomly selected 1200 classes for training
and 432 for testing. We performed the same data augmentation proposed by Santoro et al. [11],
forming new classes by rotating each member of an existing class by a multiple of 90 degrees.

Mini-ImageNet is a more difficult benchmark; a subset of the well-known ImageNet dataset, it
consists of 84× 84 color images from 100 different classes with 600 instances per class. We used the
split released by Ravi and Larochelle [10] and used by a number of other works, with 64 classes for
training, 16 for validation, and 20 for testing.

To evaluate a SNAIL on the N -way, K-shot problem, we sample N classes from the overall dataset
and K examples of each class. We then feed the corresponding NK example-label pairs to the
SNAIL in a random order, followed by a new, unlabeled example from one of the N classes. We
report the average accuracy on this last, (NK + 1)-th timestep.

Using the building blocks defined in Section 1, we can concisely decribe the SNAIL architecture
we used. For the N -way, K-shot problem, the sequence length is T = NK + 1, and we used
the following for both Omniglot and mini-Imagenet. AttentionBlock(64, 32), TCBlock(T , 128),
AttentionBlock(256, 128), TCBlock(T , 128), AttentionBlock(512, 256), followed by a final 1× 1
convolution with N filters.

For the Omniglot dataset, we used the same embedding network architecture as all prior works, which
repeat the following block four times { 3x3 conv (64 channels), batch norm, ReLU, 2x2 max pool },
and then apply a single fully-connected layer to output a 64-dimensional feature vector.

For mini-Imagenet, existing gradient-descent-based methods [10, 2], which update their model’s
weights during testing, used the same network structure as the Omniglot network but reduced the
number of channels to 32, in spite of the significantly-increased complexity of the images. We found
that this shallow embedding network did not make adequate use of SNAIL’s expressive capacity,
and opted to to use a deeper embedding network to prevent underfitting. Illustrated in Figure 4,
our embedding was a smaller version of the ResNet [4] architectures commonly used for the full
Imagenet dataset.

Figure 4: (a) A residual block within our mini-Imagenet embedding. (b) The embedding, a smaller
version of ResNet [4], uses several of the residual blocks depicted in (a).

(b) mini-Imagenet embedding

(a) Residual Block, D lters

2x2 max-pool,

dropout 0.9

3x3 conv, D lters

batch norm

leaky ReLU (leak 0.1)
Add

1x1 conv,

D lters

3x3 conv, D lters

batch norm

leaky ReLU (leak 0.1)

3x3 conv, D lters

batch norm

leaky ReLU (leak 0.1)

384-dimensional

feature vector

1x1 conv, 2048 lters

6x6 mean pool, ReLU

dropout 0.9

1x1 conv, 384 lters

input image, 84x84x3

Residual Block

64 lters

Residual Block

96 lters

Residual Block

128 lters

Residual Block

256 lters

(a) Residual Block, D lters

6

A.2 Multi-Armed Bandits

In our bandit experiments (styled after Duan et al. [1]), each of K arms gives rewards according to
a Bernoulli distribution whose parameter p ∈ [0, 1] is chosen randomly at the start of each episode
of length N . At each timestep, the meta-learner receives previous timestep’s reward, along with a
one-hot encoding of the corresponding arm selected. It outputs a discrete probability distribution over
the K arms; the selected arm is determined by sampling from this distribution.

The oracle we considered, the Gittins index [3], is the Bayes optimal solution in the discounted,
infinite horizon setting. Since it is only optimal as N → ∞, a meta-learner can outperform it for
smaller N by choosing to exploit sooner.

For the N -timestep bandit problem, we used the following SNAIL architecture: First, we applied a
fully-connected layer with 32 outputs that was shared between the policy and value function. Then
the policy used: TCBlock(N , 32), TCBlock(N , 32), AttentionBlock(32, 32). The value function
used: TCBlock(N , 16), TCBlock(N , 16), AttentionBlock(16, 16).

A.3 Tabular MDPs

In our tabular MDP experiments (also following Duan et al. [1]), each MDP had 10 states and 5
actions (both discrete); the reward for each (state, action)-pair followed a normal distribution with
unit variance where the mean was sampled from N (1, 1), and the transitions are sampled from a flat
Dirichlet distribution (the latter is a commonly used prior in Bayesian RL) with random parameters.
We allowed the meta-learners to interact with an MDP for N episodes of length 10. As input, they
received one-hot encodings of the current state and previous action, the previous reward received,
and a binary flag indicating termination of the current episode.

In addition to a random agent, we consider the follow human-designed algorithms as baselines:
• PSRL [15]: a Bayesian method that estimate the belief over the current MDP parameters.

At the start of each of the N episodes, it samples an MDP from the current posterior, and
acts according to the optimal policy for the rest of the episode.

• OPSRL [9]: an optimistic variant of PSRL.
• UCRL2 [5]: uses an extended value iteration procedure to compute an optimistic MDP

under the current belief.
• ε-greedy: with probability 1− ε, act optimally against the MAP estimate according to the

current posterior (which is updated once per episode).

The oracle we considered, value iteration, is optimal, when the MDP parameters (reward function,
transition probabilities) are known; thus, its performance provides an upper bound on that of any
algorithm, whether human-designed or meta-learned (which do not receive the MDP parameters).
Note that since our episodes were truncated at 10 timesteps, we only ran value iteration for 10
iterations. The performance for each algorithm that we report in Table 2 is the average reward per
episode, as a fraction of the reward achieved by value iteration. As an algorithm is allowed to interact
with an MDP for more episodes, its normalized performance should approach 1, as the algorithm
learns more about the current MDP.

We used the same SNAIL architecture as for bandits. Below, in Figure 5, we show learning curves of
SNAIL and LSTM.

0 1500

n = 10

0 6000

n = 25

0 6000

n = 50

0 6000

n = 75

0 6000

n = 100

LSTM SNAIL (ours)
Figure 5: Learning curves of SNAIL (red) and LSTM (blue) on the random MDP task for different
values of N . The horizontal axis is the TRPO iteration, and the vertical is average reward.

7

A.4 Continuous Control
We considered the set of tasks introduced by Finn et al. [2], in which two simulated robots (a planar
cheetah and a 3D-quadruped ant) have to run in a particular direction or at a specified velocity (the
direction or velocity are chosen randomly and not told to the agent). For each of these four task
distributions ({ant, cheetah} × {goal velocity, goal direction}), Finn et al. [2] trained a policy to
maximize its performance after one policy gradient update using 20 episodes (40 for ant), of 200
timesteps each, on a newly sampled task.

In the goal direction experiments, the reward is the magnitude of the robot’s velocity in either the
forward or backward direction, and in the goal velocity experiments, the reward is the negative
absolute value between its current forward velocity and the goal. The observations are the robot’s
joint angles and velocities, and the actions are its joint torques.

Since SNAIL and LSTM do not update their parameters at test time (instead incorporating experience
through their hidden state), they receive as input the previous action, previous reward, and an episode-
termination flag in addition to the current observation. We found that two episodes of interaction
was sufficient for these meta-learners to adapt to a task, and that unrolling them for longer did not
improve performance.

For all task distributions, the total trajectory length was T = 400 (2 episodes of 200 timesteps
each). We used the same architecture (shared between policy and value function) for all tasks: two
fully-connected layers of size 256 with tanh nonlinearities, AttentionBlock(32, 32), TCBlock(T ,
16), TCBlock(T , 16), AttentionBlock(32, 32). Then the policy and value function applied separate
fully-connected layers to produce the requisite output dimensionalities.

A.5 Visual Navigation
Both Duan et al. [1] and Wang et al. [19] consider the task of visual navigation, where the agent must
find a target in a maze using only visual inputs. The former used randomly-generated mazes and
target positions, while the latter used a fixed maze and only four different target positions. Hence,
we evaluated SNAIL on the former, more challenging task. The observations the agent receives are
30 × 40 first-person images, and the actions it can take are {step forward, turn slightly left, turn
slightly right}. We constructed a training dataset and two test datasets (unseen mazes of the same and
larger size, respectively), each with 1000 mazes. The agents were allowed to interact with each maze
for 2 episodes, with episode length 250 (1000 in the larger mazes). The starting and goal locations
were chosen randomly for each trial but remained fixed within each pair of episodes. The agents
received rewards of +1 for reaching the target (which resulted in the episode terminating), -0.01 at
each timestep, to encourage it to reach the goal faster, and -0.001 for hitting the wall.

We preprocessed the images using the same convolutional architecture as Duan et al. [1]: two layers
with {kernel size 5× 5, 16 filters, stride 2, ReLU nonlinearity}, whose output is then flattened and
then passed to a fully-connected layer to produce a feature vector of size 256.

The total trajectory length was T = 500 (2 episodes of 250 timesteps each). For the policy, we used:
TCBlock(T , 32), AttentionBlock(16, 16), TCBlock(T , 32), AttentionBlock(16, 16). For the value
function we used: TCBlock(T , 16), TCBlock(T , 16).

A.6 Additional Reinforcement Learning Hyperparameters
As discussed in Section 2, we trained all policies using trust-region policy optimization with general-
ized advantage estimation (TRPO with GAE, Schulman et al. [12, 13]). The hyperparameters are
listed in Table 7. For multi-armed bandits, tabular MDPs, and visual navigation, we used the same
hyperparamters as Duan et al. [1] to make our results directly comparable; additional tuning could
potentially improve SNAIL’s performance.

Hyperparameter Multi-armed Bandits Tabular MDPs Continuous Control Visual Navigation

Batch Size (timesteps) 250K 250K 50K 50K
Discount 0.99 0.99 0.99 0.99
GAE λ 0.3 0.3 0.97 0.99

Mean KL 0.01 0.01 0.01 0.01

Table 5: The TRPO + GAE hyperparameters we used in our RL experiments.

8

	Introduction
	Results and Discussion
	Further Experiment Details
	Few-Shot Classification
	Multi-Armed Bandits
	Tabular MDPs
	Continuous Control
	Visual Navigation
	Additional Reinforcement Learning Hyperparameters

